Table 2. Comparison results

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Results, ORs</th>
<th>M-H, Random, (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major complication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemostasis in < 7 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVITHROM® is a topical thrombin indicated as an aid to hemostasis whenever...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSIONS

This systematic review & meta-analysis of published literature shows there are no statistically-significant differences between the considered hemostatic matrices for the listed indicators. Both products have components, indications and application methods that yield similar impact on clinical outcomes.

Both products have components, indications and application methods that yield similar significant differences between the considered hemostatic matrices for the listed indicators. This systematic review & meta-analysis of published literature shows there are no statistically-significant differences between the considered hemostatic matrices for the listed indicators. Both products have components, indications and application methods that yield similar impact on clinical outcomes.

REFERENCES

A total of 94 relevant studies were found; from them all, a duplicate study was found in the databases searched, and it was removed. Afterwards, only those publications where both hemostatic matrices were compared were selected; additional exclusion criteria included case & control studies and pre-clinical data. At the end, 87 articles were excluded, and the remaining 7 were subject to a deeper review. All of these met all inclusion criteria (39,660 patients). Figure 1 shows the diagram for the systematic literature revision.

Figure 1. Flow diagram, systematic revision of evidence.

All of the final studies were assessed, along with all shown variables & potential comparison & control studies and pre-clinical data. At the end, 87 articles were excluded, and the remaining 7 were subject to a deeper review; 6 publications met all inclusion criteria (39,660 patients).

METHODS

Once comparable data were pooled from the articles, they were meta-analyzed using specialized software RevMan v.5.3. Two types of analyses were performed, depending on available information from the clinical trials. For those comparisons where means and standard deviations were used, cohort mean differences were assessed. Similarly, odds ratios (ORs) were used for those comparisons reporting the incidence/number of events, as literature suggests. (Deeks, 1998).

To address heterogeneity, this analysis considered random effects models while using the I² statistic, as it allows to incorporate the former within the meta-analysis. Figures 2-7 show the Forest Plots for all considered indicators. All Forest Plots show no statistically-significant differences between the porcine and bovine hemostatic matrices for any of the considered indicators. Table 2 summarizes estimated ORs and mean differences (95% confidence intervals). Substantial (>50%) and small (<25%) heterogeneity was observed.

RESULTS

Once comparable data were pooled from the articles, they were meta-analyzed using specialized software RevMan v.5.3. Two types of analyses were performed, depending on available information from the clinical trials. For those comparisons where means and standard deviations were used, cohort mean differences were assessed. Similarly, odds ratios (ORs) were used for those comparisons reporting the incidence/number of events, as literature suggests. (Deeks, 1998).

To address heterogeneity, this analysis considered random effects models while using the I² statistic, as it allows to incorporate the former within the meta-analysis. Figures 2-7 show the Forest Plots for all considered indicators. All Forest Plots show no statistically-significant differences between the porcine and bovine hemostatic matrices for any of the considered indicators. Table 2 summarizes estimated ORs and mean differences (95% confidence intervals). Substantial (>50%) and small (<25%) heterogeneity was observed.

Table 1. Assessed comparisons

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Included studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood transfusions</td>
<td>(Nogueira, Katz, Pinochet, Kurta, & Coleman, 2008), (Tackett, Calcaterra, Magge, & Lottu, 2016), (David, Lim, Quarnstrom, Kurta, & Roy, 2015)</td>
</tr>
<tr>
<td>Surgical/ OR time</td>
<td>(Tackett, Calcaterra, Magge, & Lottu, 2016), (Price, Tackett, & Patel, 2015)</td>
</tr>
<tr>
<td>Length of hospital stay</td>
<td>(Tackett, Calcaterra, Magge, & Lottu, 2016), (Price, Tackett, & Patel, 2015)</td>
</tr>
<tr>
<td>Major complications</td>
<td>(Nogueira, Katz, Pinochet, Kurta, & Coleman, 2008), (Tackett, Calcaterra, Magge, & Lottu, 2016), (Price, Tackett, & Patel, 2015)</td>
</tr>
<tr>
<td>Minor complications</td>
<td>(Nogueira, Katz, Pinochet, Kurta, & Coleman, 2008), (Tackett, Calcaterra, Magge, & Lottu, 2016), (Price, Tackett, & Patel, 2015)</td>
</tr>
<tr>
<td>Hospital stay in < 7 minutes</td>
<td>(Lamb, Gregor, Mandula, & Kolven, 2016), (Gazzeri, Galarza, & Alfier, 2012)</td>
</tr>
</tbody>
</table>

REFERENCES